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1. INTRODUCTION

Many kinds of data in the social sciences have a hierarchical, multilevel
or clustered structure. We refer to a hierarchy as consisting of units grouped at
different levels. Units at one level are recognized as being grouped, or nested,
within units at the next higher level. For example, municipalities are grouped
into regions; regions are formed within countries; and quite often, countries
belong to supra-national organizations.

The existence of such data hierarchies is neither accidental nor ignorable.
Once groupings are established, even if their establishment is effectively
random, they will tend to become differentiated, and this differentiation implies
that the group and its members both influence and are influenced by group
membership. To ignore this relationship is to risk overlooking the importance of
group effects, and may also render invalid many of the traditional statistical
analysis techniques used for studying data relationships. Moreover, if the
higher-level units such as countries are left out of the model, then we cannot
explore potentially important questions about their effects, which we refer to as
‘context’. This is the case of growth and convergence models, which should
take into account not only regional factors but also national effects; e.g.
economic policies, legislation, institutions or even religion (Barro and
McCleary, 2003; Bräuninger and Niebuhr, 2005; Cheshire and Magrini, 2005).

Researchers have long recognized this issue in social (mainly education),
medical and biological sciences through multilevel modelling (Goldstein, 2003:
Raudenbush and Bryk, 2002). However, it has been largely ignored in regional
science. A multilevel model is a class of variance component model that takes
hierarchical data structure into account and that makes it possible to incorporate
variables from all levels (or spatial scales). In this paper, we present the two-
level model, which is the basic version of the multilevel model. In fact, it is a
kind of random-effects variance components model in which the disturbance
has a group component (for a spatially aggregated level) and an individual
component (for a spatially disaggregated level).

We also illustrate its performance estimating a -convergence model in
order to explain income growth in the EU regions during the period 1992–2006.
We test for the importance of national effects jointly with regional variables.
Specifically, we test for the impact of regional decentralization (country-level
variable) on regional income growth. It has been suggested that countries with
regional decentralization foster innovation and economic growth (Darbi et al.,
2003) because certain decentralized services, such as education or health care,
are growth-enhancing. As long as these types of public expenditure are often
provided by regional governments, promoting equalization, they also involve
consequences for economic growth and efficiency (Currais and Rivera, 1999;
Barro and Sala-i-Martin, 1999). Regional decentralization should lead to fiscal
equalization within countries regarding the more efficient provision of public
services by sub-national governments. In addition, we also consider spatial
effects to test for the hypothesis of convergence clubs in the EU.
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The paper is organized as follows. Section 2 contains a description of the
specification and estimation of the two-level model. In Section 3, we present the
empirical results of a two-level conditional beta-convergence model of regional
income growth, in which a country level variable (regional decentralization) is
included. The conclusions are set out in Section 4.

2. THE MULTILEVEL MODEL FOR SPATIAL DATA

2.1. Single-level relationships

We begin by presenting several models describing a single-level
relationship. In spatial analysis, we refer to ‘level’ as a synonym of ‘spatial
scale’. First, we specify a single-level model at a spatially aggregated level (j),
which will be considered hereafter as the country-level:
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where standard interpretations can be given to the intercept (0), slope (1) and
residual ().

Conducting the analysis on an aggregated spatial scale (e.g the country-
level) discards all the within-group information proportioned by disaggregated
spatial scale variables (e.g. region-level), which may be as much as 80% or 90%
of the total variation. As a consequence, relations between spatially aggregated
variables are often much stronger and they may be very different from the
relation between the disaggregated variables. This is called the Modifiable
Areal Unit Problem (or MAUP; see Arbia 1989).

So as not to lose valuable information, we can disaggregate all higher
order variables to a lower spatial scale (e.g. regions) in order to specify a model
at the regional level only (i):
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In this case, it is common for regions in different countries to be more or
less independent while regions in the same country will be closer or more
similar, sharing values on many more variables. Thus, we cannot use the
assumption of independence of observations. Moreover, non-observed variables
will vanish into the error term causing within-group correlation between
disturbances.

If we explicitly want to consider the common features shared by regions
in one and the same country, we can estimate panel data models, either fixed-
effects or random-effects. The following specification simultaneously
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describes the relationships for several countries and their corresponding
regions:
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This is a kind of panel data model where j refers to the aggregated spatial
level 2 units (countries) and i to the (disaggregated) spatial level 1 units
(regions). As it stands, it is still a single level model, albeit describing a separate
relationship for each country.

In some situations, for example where there are few countries and where
interest centres on just those countries in the sample, we may analyse this model
by fitting all the 2n1 parameters as a fixed-effects model, assuming a
common ‘within-regions’ residual variance and separate lines for each country.
The fixed-effects model has some potential drawbacks. First, if the sample sizes
within groups are small, the estimates of the group effects may be unreliable.
Second, if there are J groups to be compared, then (J–1) parameters are required
to capture group effects. Third, if J is large, this entails estimating a large
number of parameters.

The fixed-effects model does not allow us to make inferences beyond the
groups in our sample; nor can it estimate the effects of country-level variables
separately since they are conflated with the general country effects. For
example, if (J – 1) dummy variables are present in the previous regression
model in order to estimate country fixed-effects (0j), we cannot additionally
estimate the effect of country-level characteristics – such as regional
decentralization – on income growth rates. This is because any country-level
variable can be expressed as a linear combination of the (J – 1) dummies.

The random-effects model estimates group (country) effects as random
terms. This model allows us to focus not just on the countries included in the
sample, but on a wider ‘population’ of countries. We then need to regard the
chosen countries as giving us information about the characteristics of all the
countries in the population. In particular, such a sample can provide estimates of
the variation and covariation between countries in the slope and intercept
parameters and will allow us to compare countries with different characteristics.
Whether the levels are fixed or random depends on how these levels are chosen
in any given experiment.

Both fixed-effects and random-effects panel data models are estimated at
the individual level (regions) and they cannot incorporate higher level variables
(countries) in the same specification. Only multilevel models take hierarchical
structures into account and make it possible to incorporate variables from all
levels (or spatial scales). The hierarchical or multilevel model is a kind of
random-effects model and it also belongs to the wider family of random-
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coefficients or variance components models. It assumes that the dataset being
analysed consists of a hierarchy of different populations whose differences
relate to that hierarchy. Thus it also assumes that the slope of each individual
(region) variable depends linearly on the class (country) variable.

2.2. Two-level model

To make (3) into a genuine two-level model we first consider it as a
random-effects model by letting 0j, 1j become random variables, usually
following a Normal distribution:
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where 0, 1 are fixed coefficients and u0j, u1j are random variables:

Then, expression (3) becomes in a random coefficient regression model:
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We shall require an extra suffix (the ‘0’) in the level 1 residual term (0ij)
to represent the random variation at level 1 (e.g. in a three-level model the
variance structure would be more complex and the regression coefficients could
also vary across level 2 units). The random variables (0ij, u0j, u1j) are referred to
as ‘residuals’ or ‘errors’; in the case of a single level model, the level 1 residual
0ij becomes the usual linear model error term.

That is to say, model (5) is also a variance component model in which the
disturbance has group-country components (u0ij, u1ij) and an individual-region
component (0ij). The region error terms are assumed to be independent across
regions (i, t):
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The country error term components are perfectly correlated within

countries ( 2 2
0 1,u u  ) but independent between countries (j, s). Some countries

might be more homogenous than others; e.g. when they are grouped in clusters.
This means that the variance of the country components could differ. In
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addition, the intercept and slope error term components are also correlated
(u01), though this relationship is constant across countries.

Formally:
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The feature of this specification, which distinguishes it from standard
linear models of the regression or analysis of variance type, is the presence of
more than one error term and this implies that special procedures are required
to obtain satisfactory parameter estimates. It is the structure of the random part
of the model that is the key factor. In the fixed part, the variables can be
measured at any level; for example in the convergence model we can measure
characteristics of not only regions but also countries.

Note that each level (e.g. country) is treated as a categorical variable
with different random effects. This is because our observations (level 1 in the
model) are nested within these categories; for example regions are nested within
countries. There are several reasons for fitting a categorical variable as a
random term rather than as fixed effects:

1- When our primary interest is in the variability across the various
categories rather than inferences about any single category. For example, if
we want to calculate how much of the variability in income growth is due to
country features and how much is residual variation due to regional
differences.

2- When we have only a small sample of regions for each country, given that
the random effects produced will be more conservative than the category
effects produced by a fixed-effect model.

3- When the number of countries is large because the fixed-effects model
must fit one dummy variable for each variable. The multilevel model is more
parsimonious because we do not fit an error component (uj) for each country

but instead we estimate 2
u directly. Thus, if we have 20 countries we have

reduced the number of parameters needed to model the between-country
variation from 20 to 1. The parsimony of multilevel models allows country
level explanatory variables to be fitted jointly with the between-country
variance.

4- When we need complex specifications of the variance structure of the
model like more levels (spatial scales) or spatial autocorrelation effects.
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2.3. Covariance matrix of the error terms of a two-level model

Equation (5) requires the estimation of two fixed coefficients (0, 1) and
four other parameters (variances and covariances), which are the so-called
random parameters:
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This is termed a variance components model because the variance of the
endogenous variable, about the fixed component, is:
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That is, the sum of level 1 and level 2 variance. This model implies that
the total variance for each region ( 2

0 ) is constant (homoskedasticity) and that

the covariance of the errors between two regions (denoted by i1, i2) in the
same country (j) is given by:
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since the level 1 residuals are assumed to be independent. So the covariance of
the errors between two regions in the same country j coincides with the constant

inter-country variance of the errors ( 2

0u
 ).

The correlation between the error terms of two such regions (i1, i2)
included in the same country j is therefore:
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which is referred to as the ‘intra-level-2-unit correlation’ (intra-class
correlation); in this case, the intra-country correlation. This correlation



42 Coro Chasco and Ana Maria Lopez

measures the proportion of the total variance which is between-countries.1 The
existence of a non-zero intra-unit correlation, resulting from the presence of
more than one error term in the model, means that traditional estimation
procedures such as ‘ordinary least squares’ (OLS), which are used for example
in multiple regression, are inapplicable.

We now look in more detail at the covariance structure of the errors of a
group of nj regions in a single country. It is typified by:
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V2j is the (njnj) covariance matrix for the income growth of nj regions in a
single country j for a two-level variance component model. The subscript 2 for
V indicates that it is a two-level model. As can be seen, there is
homoskedasticity but intra-country autocorrelation.

For example, when considering two countries, one of three regions and
one with two NUTS-2 regions, the overall covariance matrix is a block-diagonal
matrix V2. It is the covariance matrix for the endogenous variable vector y of a
two-level variance components model with two level 2 units:
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This ‘block-diagonal’ structure reflects the fact that the covariance
between regions in different countries is zero, and clearly extends to any
number of level 2 units. A more compact way of presenting this matrix, which
we shall use again is:
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where In is the (nn) identity matrix and Jn is the (nn) matrix of ones.

1 In a model with three levels, say with countries, regions and cities, we will have two such
correlations: the intra-country correlation measuring the proportion of variance that is between-
countries and the intra-region correlation measuring that between regions.
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In general, for a total number of J countries and nj elements, the
covariance matrix of a two-level variance component model is:
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In single-level OLS models, 2
0u is zero and this covariance matrix then

reduces to the standard form, 2
0 nI , where 2

0 is the constant (single) error
variance.

In Goldstein (2003, pp. 18–19), the covariance matrix of the error terms
of the general two-level model is derived. This model is an extension of model
(5) that considers random intercept and slope and also incorporates new fixed
explanatory variables. A complex covariance matrix of the error terms arises,
including two other covariance matrices for the random coefficients (one for the
country-level and the other for the region-level).

2.4. Parameter estimation methods for multilevel models

The Iterative Generalized Least Squares (IGLS) is a widely-used
estimation method for multilevel models. It is a two-stage process for
estimating the fixed and random parameters (the variances and covariances of
the random coefficients) in successive iterations (Goldstein 2003). The iteration
process is what mainly distinguishes this process from the typical GLS
estimation method for the random-effects panel data models.

We consider the simple two-level variance components model presented in
equation (8). Suppose that we knew the values of the variances ( 2 2

0 0,u   ), and
so could immediately construct the block-diagonal matrix V2, which we will
refer to simply as V. We can then immediately apply the usual Generalized
Least Squares (GLS) estimation procedure to obtain the estimator for the fixed
coefficients (0, 1):
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with J level 2 units (countries), nj level 1 units (regions) in the j-th level 2 unit
(country) and njJ = n. When the residuals have Normal distributions, GLS
estimates also yield maximum likelihood (ML) estimates.

Our estimation procedure is iterative in order to reach feasible estimates
for the generally unknown parameters. This process takes place in the following
steps:

1- We would usually start from ‘reasonable’ estimates of the fixed parameters.

Typically these will be those from an initial OLS fit (that is, assuming 2
0 0u  )

to give the OLS estimates of the fixed coefficients ( ˆ ols ). From these we form
the ‘raw’ residuals:
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The vector of raw residuals is written as:

 ije e (18)

2- If we form the cross-product matrix e e we see that the expected value of
this is simply V: E( e e ) = V.

3- We can rearrange this cross product matrix as a vector by stacking the
columns one on top of the other, which is written as vec(e∙e’) and similarly we
can construct the vector vec(V) for the error covariance matrix. For the example
given in expression (8), either vec(e∙e’) or vec(V) have 32 + 22 = 13 elements:
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4- The relationship between these vectors can be expressed as the following
linear model:
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where R is a residual vector. The left hand side of (18) is the vector of the raw
residuals in the OLS estimation of the linear model and the right hand side

contains two explanatory variables, with coefficients 2
0u , 2

0 , which are to be

estimated.

5- The estimation involves an application of GLS using the estimated

covariance matrix of  vec e e , assuming Normality, namely 2(V-1V-1) where

 is the Kronecker product. The Normality assumption allows us to express this
covariance matrix as a function of the estimated random parameters.

6- If the Normality assumption fails to hold,2 the resulting IGLS estimates are
still consistent although not fully efficient, but the standard errors (estimated
using the Normality assumption) and confidence intervals will generally not be
consistent.

7- With the estimates obtained from applying GLS to expression (20) we return
to expression (16) to obtain new GLS estimates of the fixed effects and so
alternate between the random and fixed parameter estimation until the
procedure converges, that is the estimates for all the parameters do not change
from one iteration to the next.

Essentially the same procedure can be used for more complicated models
(Rasbash et al., 2000).

The maximum likelihood (ML) procedure produces biased estimates of
the random parameters because it takes no account of the sampling variation of
the fixed parameters. This may be important in small samples and we can
produce unbiased estimates by using a modification known as restricted
maximum likelihood (REML). As stated in Goldstein (2003), the IGLS
algorithm is readily modified to produce restricted estimates that are called

2 For certain variance component models alternative distributional assumptions have been studied,
especially for discrete response models of the kind discussed in Clayton and Kaldor (1987) and
maximum likelihood estimates obtained. For more general models, however, with several random
coefficients, the assumption of multivariate Normality is a flexible one, which allows a conve-
nient parameterization for complex covariance structures at several levels.
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RIGLS. This is the method we use in the paper since we work with a relatively
small sample.

There are many other algorithms and estimation methods for multilevel
models. This is the case of the Expectation Maximization (EM) algorithm or
variants of it (Raundenbush and Bryck, 2002) or Longford (1987)’s ‘Fisher
scoring’ algorithm. A rather different approach is to view the multilevel linear
model as a Bayesian linear model (Lindley and Smith, 1972). An alternative to
the full Bayes estimation, known as ‘Empirical Bayes’ (EB), ignores the prior
distributions of the random parameters, treating them as known for purposes of
inference. When Normality is assumed, these estimates are the same as IGLS or
RIGLS. More recently, the full Bayesian treatment has become computationally
feasible with the development of ‘Markov Chain Monte Carlo’ (MCMC)
methods, especially Gibbs Sampling (Zeger and Karim, 1991). This has the
advantage, in small samples, of taking account of the uncertainty associated
with the estimates of the random parameters and can provide exact measures of
uncertainty. The maximum likelihood methods tend to overestimate precision
because they ignore this uncertainty.

3. MODEL AND DATA

3.1. Specification of the -convergence model

Our aim is to determine to what extent decentralized countries in Europe
(from a political and economic point of view) fostered more economic growth
in their corresponding regions than countries with a classical unitary state. For
this purpose, we specify an income growth model of the EU regions taking into
account the neo-classical growth model (Solow, 1956), which is considered as a
natural starting point for the analysis of regional disparities, especially in
Europe (Fingleton, 2003). The neo-classical model predicts that the growth rate
of a region is positively related to the distance that separates it from its steady
state. That is to say, if all regional economies are structurally identical and have
access to the same technology, they are characterized by the same steady state,
and differ only by their initial conditions.

In the case of the European regions, as their initial conditions are not
similar, we initially propose a conditional -convergence model, in which per
capita income growth in period (0, T) is a function of per capita income at time
0 and two control variables that proxy the differences in steady-state positions
across different economies, employment (Ei) and regional decentralization (Di).
We also control for the presence of spatial effects (Si), mainly in the form of
spatial heterogeneity (spatial clubs convergence hypothesis). In general terms,
the formal expression is:

2

( 91 , , , , )

(0, )

i i i i i i
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(21)
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where Gi is the endogenous variable, which is measured as the average of the
natural log of per capita GVA growth rate in region i during the period 1991–
2006. In the present work, data are extracted from the Cambridge Econometrics
regional database,3 which provides comparable regional data at NUTS-2
(Nomenclature of Territorial Units for Statistics, established by Eurostat) level
on level on real gross value-added (GVA).4 The choice of the NUTS-2 level is
the appropriate one when analysing regional decentralization in countries, since
it is the spatial unit with decision capacity. We have selected a sample of 233
NUTS 3 regions in 20 EU countries.5 The sample includes information about
Austria (9 units), Belgium (11 units), the Czech Republic (8 units), Denmark (5
units), Finland (4 units), France (21 units), Germany (39 units), Greece (9
units), the Netherlands (12 units), Hungary (7 units), Ireland (2 units), Italy (19
units), Luxembourg (1 unit), Poland (16 units), Portugal (4 units), Slovakia (4
units), Slovenia (2 units), Spain (15 units), Sweden (8 units) and the United
Kingdom (37 units).

In the group of explanatory variables, g91i represents the initial
conditions, which is proxied by per capita GVA in NUTS-2 region i in the year
1991 (in natural logarithms). Following the neoclassical paradigm, we expect
that less developed regions are catching up with the richer ones, so that regional
levels of per capita income tend to converge over the long run because of
diminishing returns on capital. In a competitive environment, regional labour
and capital mobility, as well as regional trade, will also work in favour of factor
price convergence, reinforcing the negative relation between growth and
regional inequality. However, other schools of thought tend to agree with
Myrdal’s basic claim (1957) that growth is a spatially cumulative process,
which is likely to increase inequalities (divergence). Therefore, a negative value
for the slope coefficient  indicates convergence of per capita GVA across
regions within a given time period, while a positive value indicates divergence.
In the group of the selected NUTS-2 regions, a negative sign for β is expected,
as most of the regions with lower per capita income growth in the 1991–2006
period were those with higher per capita GDP in 1991, and vice versa.

The hypothesis of conditional convergence is tested controlling for
permanent cross-regions differences that could potentially explain regional
growth income. These variables, which are usually referred to the first moment
of time, allow us to proxy the differences in steady-state positions across
different economies. These control variables represent all other effects that
contribute or weaken economic growth (Mella and Chasco, 2006). Occupation
rate (E) is one of the several control variables used in the literature. It is
measured as the percentage of population in employment in 1991. We expect a

3 See in Table 1 a complete specification of all the variables.
4 GVA equals GDP net of taxes on and subsidies for production.
5 From the total group of 253 NUTS-3 regions in the EU-25, we have omitted some units with
missing data and the ‘islands’; i.e. those regions with no spatially contiguous neighbours. Some
regions with extremely high values of income growth rates have also been excluded. This is why
Cyprus, Malta, Estonia, Latvia and Lithuania are not present leading to a regional sample of 233
NUTS-2 in 20 EU countries.
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positive sign for its estimated coefficient due to the fact that income growth is
the final result of an accumulation process of human resources in a region.

Table 1: Definition of the variables

Variable Level Source

Dependent variable:

G
Average per capita GVA growth
rate, period 1991–2006 (in natural
logarithms)

NUTS-2
regions

European Regional Database
(Cambridge Econometrics)

Explanatory variables:
A) Initial conditions:

g91
GVA per capita in 1991 (in natural
logarithms)

NUTS-2
regions

European Regional Database
(Cambridge Econometrics)

B) Control variables:

E
Percentage of employees over total
population in 1991 (in natural
logarithms)

NUTS-2
regions

European Regional Database
(Cambridge Econometrics)

D

Forms of regional government in
1991 (1: fully centralized; 2:
devolving unitary countries; 3:
regionalized or federal countries)

Countries
Self-elaboration from Russel
Barter (2000)

Wg91
Spatial lag variable of GVA per
capita in 1991 (in natural
logarithms)

NUTS-2
regions

Self elaboration from
European Regional Database
(Cambridge Econometrics)

WE
Spatial lag variable of Percentage of
employees over total population in
1991 (in natural logarithms)

NUTS-2
regions

Self elaboration from
European Regional Database
(Cambridge Econometrics)

x X-coordinate (East-West direction)
NUTS-2
regions

Self elaboration

y
Y-coordinate (North-South
direction)

NUTS-2
regions

Self elaboration

C) Spatial split variable:

REG
Spatial regimes (1: core regions; 0:
periphery regions)

NUTS-2
regions

Self-elaboration

Regional decentralization (D) is also a control variable in this model. It
has been defined as a categorical country-level variable since it adopts the same
values for the NUTS-2 regions belonging to the same country. The categories
have been defined from the typology established by Rusell Barter (2000) for the
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forms of regional government6: value 1 for those classic centralized states with
no powers for the regions in the year 1991 (Eastern countries, Finland, Greece,
Ireland, Luxembourg, Portugal, Sweden and UK); value 2 for devolving
centralized states with limited powers for the regions in the year 1991 (France,
the Netherlands and Denmark); and value 3 for regionalized or federal states
with advanced and wide-ranging powers for the regions (Austria, Germany,
Belgium, Spain and Italy).

Finally, we have also considered the presence of spatial effects, which
invalidate the assumption of independence of the error terms in convergence
models (Rey and Montouri, 1999). In fact, spatial spillovers (spatial auto-
correlation and/or spatial heterogeneity) should be taken into account to avoid
bias in the resulting estimates. An option when considering spatial spillovers of
regional income growth is to include exogenous spatial lag as environmental
explanatory variables (Le Gallo et al., 2003; Fingleton and López-Bazo, 2006).
This is also the solution proposed by Morenoff (2003) for hierarchical models,
since they have not yet implemented the proper estimation methods for the
spatial lag and the spatial error model. Therefore, Wg91 and WE are the spatial
lag variables of per capita income and employment rate (both referred to 1991).7

Other spatial variables capable of capturing spatial trends in the data are the
Earth coordinates: x (East - West direction) and y (North - South direction).

In addition, we also test for the club-convergence hypothesis (Durlauf
and Johnson, 1995), which implies the existence of different regional economies
(clubs) that are similar in structural characteristics and tend to converge within
groups. The equilibrium that each region will reach depends on the initial
conditions of the group to which they belong. The composition of the regional
clubs could be defined after an exploratory spatial data analysis (ESDA) as
different spatial regimes. Moran’s scatterplot is a good instrument for detecting
spatial clusters in a variable (Anselin, 1996). In Figure 1, we have represented
the Moran’s scatterplot of the per capita income in 1991 (in natural
logarithms).8 It demonstrates that in 1991, the regional income distribution
appeared to be clustered in nature. That is, regions with relatively high/low
income levels tended to be located near other regions with high/low income

6 It must be said that the majority of European countries, with the exception of federal systems,
are unitary in the sense that sovereignty is exclusively invested in central government. The degree
to which central governments may devolve functions and power, however, clearly differs. In this
paper, what we consider is decentralization of spending decisions particularly in areas such as
health and education. For example, Russell Barter (2000) considers the UK as a centralized
country in spite of the devolved administrations for Wales, Scotland and Northern Ireland because
devolution has not so far had a major impact on the degree to which expenditure is assigned to
sub-national jurisdictions.
7 The spatial weights matrix, W, has been defined as an inverse distance matrix, such that each
element wij is set equal to the inverse of the squared distance between regions i and j. Namely,
region vicinity is inversely determined by the relative distance that separates them.
8 The magnitude of the Moran’s I statistic for spatial autocorrelation is high (I0.56) and very
significant at p = 0.001, which is well above its expected value under the null hypothesis of no
spatial autocorrelation, E[I] = –0.003. Inference is based on the permutation approach (999
permutations). There is also high spatial autocorrelation in the distribution of employment rates
with a Moran’s I value of 0.24 (p = 0.001).
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levels more often than would be expected as a result of purely random factors.
The fist quadrant of the Moran’s scatterplot represents those higher-income
regions (above average) that are surrounded by higher-income neighbours. They
represent the ‘core’ in terms of income, the rest of the NUTS-2 regions being
the ‘periphery’. Highlighting them in the map, splits the NUTS-2 regions into
two spatial regimes (clubs) as has been detected in other studies (e.g. Canova,
2004; Ertur et al., 2006).

Figure 2 is a scatterplot of the log per capita income growth rate in 1991–
2006 by the log per capita income in 1991. In this plot no distinction is made
between the countries to which the NUTS-3 units belong. There is a general
trend, with increasing income per capita in 1991 associated with decreasing
income growth rate in the period 1991–2006. This result confirms the
hypothesis of regional convergence in Europe. In addition, ø the narrowing of
the between NUTS-3 variation in the income growth rate with increasing
income per capita in 1991 is remarkable, depicting some interesting clusters in
the area of maximum dispersion. There is a group of regions from the Eastern
countries that starting from lower per capita income in 1991, exhibited a
completely different behaviour in terms of income growth. First, most NUTS-2
from the Czech Republic and Hungary, which are centralized countries, had the
lowest income growth rates (down-divergence). Second, NUTS-2 from Poland
and Slovakia, which are actually devolving centralized countries, attained
higher (above the average) income growth (convergence). Third, there is
another cluster of NUTS-2 from Ireland and East-Germany that achieved the
highest income growth with an initial per capita income above the European
average (upper-divergence). Note that the outstanding clusters (first and third)
are formed by NUTS-2 from countries with regional decentralization, with the
exception of Ireland.

Figure 1: Moran scatterplot (left) and map (right) of regional log per capita
GVA in 1991: selection of regions in the first quadrant
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Figure 2: Scatterplot of regional income growth in 1991–2006 (D) against per
capita income in 1991 (g91)

3.2. Estimation of a spatial multilevel beta-convergence model

Our initial model is a one-level panel data of the conditional -
convergence model which relates regional per capita GVA growth rate (G) with
per capita GVA in 1991 (g91) and the following control variables: employment
rate (E) and the spatial lag variable of per capita income in 1991 (Wg91)9:
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In this model, no categorical country-level has been specified yet, so it
can be estimated by Ordinary Least Squares (OLS).10 As is shown in Table 2,
all the coefficients are quite significant. The multicollinearity figure is 30,
which is considered acceptable. The Jarque-Bera non-normality statistic on the
residuals takes on a significantly high value. Consequently, we will treat with
caution the results of the misspecification tests depending on the normality
assumption. The Kelejian-Robinson test for spatial autocorrelation, which is not
affected by non-normal errors, is not significant (p = 0.943). Nevertheless, both
the Koenker-Basset test and the White test are quite significant showing the
existence of an unspecified form of heteroskedasticity which is probably due (as
shown in the ESDA) to the existence of two spatial regimes in per capita

9 The spatial lag variable of employment rate (WE) was removed from the model since it is not
statistically significant at 95%.
10 Note that these estimates coincide with the first iteration of IGLS.
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income (Figure 1). This result is confirmed by the spatial Chow test11 on the
null hypothesis where the coefficients are the same in both spatial regimes,
which is also clearly rejected at 99%.

Therefore, OLS errors are not random and the sources of this non-
randomness could be the existence of two spatial regimes, as suggested by
ESDA, the White test and the spatial Chow test. Model (22) will also lead to
bias results because it ignores country - fixed or random - effects. Since we
want to test for the incidence of a country-level variable - forms of regional
government (D) - on income growth, we next specify the following random-
effects multilevel model:
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This model, which introduces a new country-level categorical variable
(D), has been estimated by RIGLS; the estimation was completed at iteration
12. As stated before, one of the strengths of multilevel modelling is the ability
to estimate correctly between-country variation and also include country-level
regressors. In order to assess whether model (23) is more efficient than model
(22) we compute the likelihood ratio test12 (LR) of H0: 2

0 0u  . That is to say,

we compare the multilevel model with the basic model, where 2
0u is

constrained to equal zero. The value of the likelihood ratio statistic, obtained
from the two models log-likelihoods is 48.27 (p = 0.000). We conclude that
there is significant variation between countries.

Recall that model (23) amounts to fitting a set of parallel straight lines to
the data from the different countries. The slopes of the lines are all the same,
and the fitted values of the common slopes are – 0.0178 (g91), 0.0377 (E), –
0.0099 (W1g91), 0.0211 (WE), 0.0133 (D_devolv) and 0.0101 (D_regional). As
we can see in Table 2, all the estimates are clearly significant at 95% with the
exception of the two dummies of regional decentralization. The intercepts for
the different countries are the country-level residuals (u0j) and these are
distributed around zero with a variance of 2 4

0
ˆ 2.9038 10u

  (between-country

estimated variance). Obviously the actual data points do not lie exactly on the

11 The spatial Wald-Chow test was proposed by Anselin (1990). It is based on an asymptotic
Wald statistic distributed as a 2 distribution with [(m – 1).k] degrees of freedom (m being the
number of regimes and k the number of estimated coefficients).
12 This LR test corresponds to twice the difference between the log likelihood in the multilevel
model and the log likelihood in a standard regression model with the same set of explanatory
variables. It is distributed as a 2 variate with one degree of freedom.
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straight lines; they vary about them by amounts given by the NUTS-2 region-
level residuals (ij) which have a variance estimated as 0.57410-4.

Table 2: Estimation results for different models of regional
per capita GVA growth

Model
Standard

model
Two-level

model
Two-level model

(Core regions)
Two-level model

(Periphery regions)
Estimation OLS RIGLS RIGLS RIGLS

# observations 233 233 146 87

Intercept (0)
0.0543**

(0.0050)
- - -

Centralized states mean value
(0)

-
0.1371**

(0.0131)
0.0171**

(0.0074)
0.0863**

(0.0178)

g91
–0.0071**

(0.0020)
–0.0185**

(0.0030)
0.0052**

(0.0018)
–0.0151**

(0.0053)

E 0.0078**

(0.0043)
0.0390**

(0.0011)
-

0.0354**

(0.0109)

Wg91 –0.0043*

(0.0030)
–0.0100**

(0.0025)
- -

WE -
0.0216**

(0.0088)
0.0099**

(0.0059)
-

x-coordinate
(East-West direction)

- -
–0.00022**

(0.00014)
–0.00065**

(0.00037)

D_devolv
-

0.0140
(0.0129)

–0.0074**

(0.0039)
-

D_regional
-

0.0107
(0.0106)

–0.0082**

(0.0035)
0.0067

(0.0106)

Between-country variance ( 2
u ) - 3.73510-4 2.31210-5 2.32010-4

Between-region variance ( 2
 ) 9.73710-5 0.58110-4 1.52710-5 1.05510-4

LIK 745.493 769.626 589.308 255.553
AIC –1,482.99 –1525.25 –1,166.62 –511.11
Jarque-Bera norm. test 111.78** - - -
Multicollinearity # 29 - - -
Koenker-Bassett test 31.00** - - -
White test 55.02** - - -
Kelejian-Rob. test 0.76 - - -
Spatial Chow test 3.35** - - -
Convergence speed (b) 0.8% 2.2%

Divergence
1.3%

Half-life () 97 years 37 years 60 years

Notes: * Null-hypothesis rejection between 5–10 per cent of significance. ** Null-hypothesis
rejection below 5 per cent of significance. Standard is a one-level model. OLS indicates ordinary
least squares estimation. RIGLS indicates rectrictive iterative generalized least squares estimation.
LIK is the log-likelihood value. AIC is the Akaike Information Criterion. Jarque Bera norm. test
is the Jarque-Bera non-normality test on the residuals. Multicollinearity # is a test for
multicollinearity in the regressors. Koenker-Bassett test is the Koenker-Bassett test for hetero-
skedasticity robust to non-normality in the errors. White test is the White test for unspecified
heteroskedasticity. Kelejian-Rob. is the Kelejian-Robinson test for spatial autocorrelation robust
to non-normality in the errors. Spatial Chow test is the spatial Chow-Wald test on spatial
instability of the coefficients in two regimes: core NUTS-2 regions (REG=1) and Periphery
NUTS-2 regions (REG=0). Convergence speed is the convergence speed. Half-life is the time
necessary for the group of cities to reach half of the variation, which separates them from their
steady state.
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The intra-country correlation measures the proportion of the total

variance which is between-countries:
2 2 2

0 0 0
ˆ ˆ ˆ ˆ( ) 0.87

u u 
      ; i.e. almost

90% of the total variance in NUTS-2 region income growth may be attributed to
differences between countries. This result also highlights the superiority of a
random coefficients multilevel model and seems to confirm Cheshire and
Magrini’s (2005) assumption, i.e. that ‘regions within the EU seem to behave
like city-states, not as simply the spatial units from which a continental
economy is constructed’.

The reference category for variable D is ‘centralized states’, and it has
been defined as two dummy variables, D_devolv and D_regional, which take a
value of 1 for those NUTS-2 regions in devolving centralized and regiona-
lized/federal countries, respectively. The parameter 0 is the mean for
centralized countries whereas 5 (D_devolv) and 6 (D_regional) represent the
mean difference in income growth between regions in devolving centralized or
regionalized/federal states (respectively) and regions in a classic unitary
country. We see that during the period 1991–2006, the EU NUTS-2 regions
from devolving and regional/federal states grew more than regions from
centralized states. Nevertheless, these results must be considered with caution
because the estimated coefficients for variables D_devolv and D_regional are
not statistically significant at all. In addition, the existence of two remarkable
spatial regimes can also bias all the results of this model.

Using the estimated β1 coefficient, the convergence process can be
characterized by two additional concepts: (i) convergence speed, which can be
defined as 1ln(1 )b T T   (for T=15 years), and, (ii) half-life or the time

necessary for the economies to reach half of the variation that separates them
from their steady state:

1ln(2) ln(1 )    . In this model, the associated

speed of convergence is 2.2 per cent, close to the 2 per cent usually found in the
standard convergence literature, which indicates a similar process (the half-life
is 37 years).

In order to test whether spatial heterogeneity might be biasing the
previous outcome, we estimate model (23) for the two previously defined
spatial regimes: core and periphery. In effect, results change significantly. In the
core area, both D_devolv and D_regional are more or less similar in value,
significant, and negative; i.e. regions in devolving centralized and
regionalized/federalist countries experienced less income growth than regions in
totally centralized countries. In the ‘periphery’ area, we have got a different
result: D_regional achieves a positive significant coefficient. In addition, we
find a convergence trend across the peripheral regions, though they are moving
at a slower speed (1.1%). Nevertheless, in the core, NUTS-2 regions
experienced clear divergence.

In short, it is not clear that country decentralization has had a positive
impact on the economic development of European regions. If we consider them
as a whole, we find some evidence in favour of decentralization, though it is not
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statistically significant. If we split the EU NUTS-2 into core-periphery regions,
we find that only in the core is decentralization significant but in the
diametrically opposite sense to that expected; i.e. the most dynamic regions
were those located in more centralized countries (Finland, Sweden and the UK).
Regarding peripheral regions, we find evidence in favour of more decentralized
countries (e.g. Spain and Italy with respect to Eastern countries and Greece) but
it is not statistically significant.

4. CONCLUSIONS

In this paper, we present the multilevel or hierarchical model as a good
instrument for estimating group-level variables (e.g. countries) jointly with
individual-level variables (e.g. regions). That is to say, it allows us to estimate
between-country variation and country-level regressors in the same model. We
illustrate its performance estimating a two-level conditional beta-convergence
model in order to explain income growth in the EU regions during the period
1992–2006. In particular, we test for the importance of regional decentralization
(country-level variable) jointly with classical regional variables, such as initial
income, employment rate and spatial variables. Since decentralized provision
and fiscal autonomy can promote the efficiency and accountability of sub-
central governments, a positive impact of this variable is expected on income
growth. Nevertheless, after controlling for some variables, results are really
surprising for the EU regions. Overall, there is only weak evidence in favour of
regional decentralization as an engine of income growth.

However, splitting the regions into a core-periphery framework, we find
that in the core of the EU decentralization is no guarantee of higher income
growth rates. On the contrary, we easily find dynamic regions in Luxembourg,
the UK and Finland, which are considered as classic unitary states from the
point of view of spending decisions particularly in areas such as health and
education. In peripheral regions, the role of national decentralization in
peripheral regions ø is positive at least but statistically insignificant. In fact,
higher income rates are found in Ireland and some Eastern countries (mainly
Poland and Slovakia) instead of the peripheral regions of highly regionalized
countries such as Italy or Spain.

These astonishing results are not possibly questioning the efficiency of
regional decentralization in theory, but the way in which it has been developed
in Europe. Multiple forms of decentralization make it difficult to construct this
variable. In addition, asymmetric and multi-speed reforms - although sometimes
justified on historical grounds—have resulted in considerable added complexity
and cannot be justified on economic grounds since it is probably unsustainable.
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MODÈLES MULTI-NIVEAUX : UNE APPLICATION
AU MODÈLE DE BETA-CONVERGENCE

Résumé – De nombreuses données en science sociale possèdent une structure
hiérarchique ou multi-niveaux. Par exemple, les communes font partie de
régions, qui elles-mêmes font partie de pays. Ces derniers font en outre le plus
souvent partie d’organisations supranationales. Une fois que ces différents
regroupements ont été établis, ils sont différenciés. Cette différenciation
implique que le groupe et ses membres influencent et sont influencés par
l’appartenance au groupe. Ignorer ce type de relation revient à ignorer
l’importance des effets de groupe, ce qui potentiellement invalide les analyses
statistiques traditionnelles. Cet article s’attache alors à spécifier un modèle
simple à deux niveaux pour un modèle de beta-convergence conditionnelle
estimé sur un échantillon de régions européennes au niveau NUTS-2. Plus
précisément, nous analysons le rôle de la décentralisation régionale (variable
mesurée au niveau national) sur la croissance du revenu régional, afin de
vérifier si les pays possédant une certaine forme de décentralisation régionale
connaissent une croissance plus rapide.


